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NOMENCLATURE 

Symbol Description 

C speed of sound 

C specific heat at constant pressure 
P 

V 
C 

i? 
specific heat at constant volume 

body force vector 

g gravitational acceleration 
i 

k thermal conductivity 

K coefficient of isothermal compressibility 

L 

n 

Nu Nus s elt number 

P pres sur e 

Pr Prandtl number 
q * total heat flux 

qr 

qe 

R gas constant 
Re Reynolds number 

r radial corrdinate 
S time scale factor 

node point rtitl on finite-difference grid 

char act e r  ist ic length 
time point rrnlr  in finite-difference grid 

-L radiation heat f lux  vector 

internal heat generation rate  

t 

U 
A 

V 
X 

time 

velocity component in x-direction (or r direction) 

velocity vector 

Cartesian coordinate 
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NOMENCLATURE (Continued) 

Symbol Description 

a 

P 
Y 

x 
I.1 dynamic viscosity 

P density 
9 viscous dissipation function 
Y kinematic viscosity 

the r mal diffu s ivit y 

coefficient of thermal expans ion 

ratio of specific heats (C /Cv) 

"second" or  bulk coefficient of viscosity 
P 

Subscript 

0 

e 

W wall condition 

i 

m mean value 

initial condition or reference value 

condition at earth's 1 -g acceleration 

space coordinate designation in finite difference grid 

Supers c r  ipt s 

n 
r 

time coordinate designation in finite difference grid 

indicates dimensional quantities 

Operators 

time partial derivative a 
a t  I_ 

a a  sz-' ar space partial derivative 

substantial derivative: - a t (T * v) Dt a t  
D - 

dot product of vectors 

V gradient operator 

V divergence operator 
X cross product of vectors 



Section 1 
INTRODUCTION AND SUMMARY 

The major advantage foreseen in manufacturing products in space is the 

It may eventually prove feasible, in this unique en- near-absence of gravity. 
vironment, to  produce products which are superior in quality to  those made on 

earth. In manufacturing processes involving confined fluids which are heated, 

the low gravity environment of space should virtually eliminate natural fluid 
convection driven by gravity. However, there are driving forces other than 

gravity which could possibly produce significant fluid circulation in confined 

systems. 

temperature variations can induce convection. 
and compressions in a confined gas could also generate fluid circulation. 

vection driven by mechanisms other than gravity has received very little at - 
tention to  date; thus the current effort was initiated to  determine the magnitude 
and effects of non-gravity convection on typical space manufacturing processes. 

If a f ree  liquid surface is present, surface tension gradients due to  
Thermally induced expans ions 

Con- 

The basic approach used to  analyze this problem is to  formdate  a math- 

ematical model of a simple yet representative system and obtain solutions for 

typical boundary conditions. 
vection can then be estimated. The sample problem chosen is that of a single 

component compressible fluid in a low -gravity confined region which is heated 
along a wall. 
partial differential equations a r e  developed from the full equations for conserva - 
tion of mass, momentum and energy. 

strongly coupled equations, a numerical solution utilizing finite -differences is 

employed. 
on a Univac 1 1  08 digital computer. 

thermally induced wave motion and heat conduction a r e  included. 

been obtained which indicate that pressure and thermal expansion effects can 
induce significant fluid motion and increase heat transfer in low gravity. 

The trends and magnitudes of non-gravity con- 

A one-dimensional flow situation is assumed and the governing 

Since these a r e  highly nonlinear and 

An explicit finite -difference scheme is used t o  program the equations 
Sample problems are solved in which 

Results have 

In 

1 - 1  
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addition, the pressure waves a r e  confirmed to be acoustical as discussed in 

the literature. 
acoustic convective motion in a compressible fluid could have significant effects 

on space manufacturing processes involving heated fluids. 

is ghen  for developing a two-dimensional analytic model for further study of 
pressure and thermal expansion convection in low gravity. 

From the study it is concluded that non-gravity-driven thermo- 

A recommendation 

Section 2 of this report details the analytic formulation of the problem 

including the conservation equations, boundary conditions, dimensional analysis 

and assumptions, 

difference equations is given in Section 3. Appendixes A and B discuss the 

computer program which implements the numerical algorithms. Section 4 
presents numerical results for two sample configurations - infinite parallel 

plates and concentric cylinders. 

of the Apollo 14 Heat Flow and Convection Demonstration are also given. 

clusions are drawn from the results and recommendations for further analysis 

are given in Section 5. 

A discussion of the numerical solution method and finite- 

Results for a one -dimensional radial model 
Con- 
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Section 2 
ANALYTIC DEVELOPMENT 

2.1 THE PROBLEM 

In conjunction with NASA's Manufacturing in Space Program, several  

demonstration experiments have flown aboard Apollo spacecraft on their moon 

missions. The Heat Flow and Convection Demonstration Experiments (Ref. 1) 

were  flown on the Apollo 14 mission to  obtain data and information on heat 
transfer and fluid behavior in a low-gravity environment. 

ment package has recently flown on the Apollo 17 mission. 

the Apollo 14 experiments strongly indicate that some mode of fluid convection 
-4 occurs even in a to  10 g environment. The radial cell portion of these 

experiments exhibits a particularly interesting behavior. 

consists of a cylinder of CO2 gas which is heated at the center of the cylinder. 

Liquid crystals were used as temperature indicators. 

transfer model of this unit was designed which includes conduction and radia- 

tion-but no fluid motion. 

predictions with the actual flight data is shown in Fig. 1 taken from Ref. 1. 
Although the magnitude of the numbers are in llreasonablell agreement, the 
shape of the flight data curve indicates that fluid convection was probably 

occurring. 

tion curve and then levels off while the conduction curve continues t o  rise. 
Reference 1 provides more details on these experiments. 

A similar experi- 

The results of 

The "radial cell'' 

A theoretical heat 

A comparison of the theoretical model temperature 

This curve rises faster  at the early times than the pure conduc- 

The current analytic study of thermal convection was initiated to  ex- 
plain the -behavior of the Apollo 14 radial cell data and t o  develop the analytical 

capability necessary to assess the role of low-gravity convection in space 

manufacturing processes. 

2 -1 
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2.2 ANALYTICAL APPROACH 

The first step taken in this analysis was to  postulate a possible driving 

mechanism for thermal convection of a completely confined compressible fluid 
in a low-gravity environment. 

pressure and thermal expansion effects which result when a confined com- 

pressible fluid is heated. This problem, herein termed thermoacoustic con- 

vection, has received little attention in the literature. 
Knudsen (Ref. 3) and Luikov and Berkovsky (Ref. 4) used a linear perturbation 

analysis t o  investigate the wave motion induced in gases by boundary tempera- 

ture  gradients. They found that sharp rises in boundary temperature can in- 
duce expansions which cause pressure waves to  propagate through the fluid in 

much the same manner as pushing a piston through a gas filled pipe. Larkin 

(Ref, 5) investigated the thermal expansion effects in a confined gas in zero 

gravity. 
effects, using a finite-difference numerical scheme on a digital computer. 

results indicate that heat transfer rates and pressure rises a r e  significantly 

increased over predictions which neglect the thermally induced fluid motion. 
His calculations confirmed the acoustic nature of the velocity waves. More 

recently, Thursaisamy (Ref. 6) reached similar conclusions while investigating 

pressure behavior in spacecraft cryogenic tanks. 

The mechanism isolated for study here is the 

Trilling (Ref. 2), 

He solved the nonlinear conservation equations, with compressibility 
His 

The approach taken in this analysis is to formulate a mathematical model 

of a simple yet representative fluid system and t o  study solutions for typical 
boundary conditions encountered in "space manufacturing.'' The fluid mechanics 

model begins with the conservation equations of motion, continuity, and energy 

in Eulerian coordinates. Fo r  a viscous, 

these equations a r e  found in standard text 

heat c onduc t ing Newtonian fluid, 

books (Refs. 7 and 8 )  in vector form: 

Navier -Stokes Equation 

2-3 



Continuity Equation 

9? Dt 4- p ( v  7, = 0 

Energy Equation 

Equation of State 

P = P(p, T) 

These equations, with appropriate boundary conditions, describe the 
flow and thermal behavior of the fluid. 

and strongly coupled equations such that general solutions are not possible. 

Appropriate assumptions and simplifications must be made if any solution to  

the convection problem is expected. 

reduce the equations t o  a manageable form; however, the nonlinear behavior 

These a re ,  of course, highly nonlinear 

Two models are used in this study to  

still renders analytic solutions impossible. 

finite -differences is employed. 
A numerical solution utilizing 

2.3 MATHEMATICAL MODELS 

Two flow models are considered. 

assumptions, but differ in geometric aspects. 

parallel plates which bound a compressible fluid. 
one -dimensional and can be described in a Cartesian reference frame. Model 
2 consists of a radial segment of two concentric cylinders with a compressible 

gas between them. 

Both incorporate the same basic 

Model 1 consists of two infinite 

The flow situation is thus 

The outer cylinder then represents a fluid container and 

the inner cylinder is a heater. 
then describe the geometry. 

A one-dimensional radial coordinate system 
Both models utilize the following assumptions; 

2 -4 



0 Newtonian fluid obeying Stokes viscosity 
hypothesis (A = -2 /3p)  

0 Constant thermal properties k, Cv, p,  y 

0 No radiation or  internal heat sources 
0 No viscous dissipation of energy 

0 Body forces a r e  negligible (g/ge << 1) 

0 Ideal gas equation of state (P = pRT) 

Most previous investigators have invoked the classical  Boussinesq 
approximation which neglects the effects of pressure  on the density profile 

and allows density to  vary with temperature only in the body force term,  The 

density is thus constant in all other t e rms  resulting in a quasi-incompressible 
approach. This assumption is - not made here. The equations of compressible - 

flow are used with variable density in all t e rms  and related t o  pressure  and 

temperature through an ideal gas equation of state. 

The primitive variable form of the equations a r e  used as opposed t o  

invoking transformations or combining equations to introduce fictitious variables. 

The modern literature, (e.g., Ref. 9), indicates that this approach may yield 

results which are more physically correct  and also may have advantages in 
numerical stability and accuracy. The two mathematical models are now given. 

2.3.1 Infinite Parallel Plate Model 

The schematic below depicts the flow situation for Model 1. 

Is other mal W a l l  + 
XI = L' - 1 

t 
I 
L' 

I 
Compr es s ible 

Fluid 

f. x' = 0 

t 
Heated Wal l  
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The governing equations (with the prescribed assumptions) can now be obtained 

from the general system (1) - (4). 
derived in most fluid mechanics texts (Refs. 7 and 8) and the derivation is not 

repeated here. 

dimensions; unprimed variables are dimensionless. 

take the following form: 

The one-dimensional Cartesian form is 

Pr imes  ( I )  are used to  indicate that a quantity has physical 

The governing equations 

Momentum 

2 a +4/3p' - - at, (p'u') t - (p'u'u') = - 
a XI a xi axJ 

a a -8P'  

Continuity 

Energy 

(5) 

State - ! 

These equations will be nondimensionalized in Section 2.4 and expressed with 
dimens ionle s s group s appearing as c oe f f icient s . 

The intial and boundary conditions for Model 1 a r e  expressed mathe- 

matically as follows: 

2-6 
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Velocity 

(9) I ~ 9 ( x 1 , ~ = 0 )  = o 
u~(x'=o, tl) = U' (x'=e, t') = o 

initially at r est  

no slip at walls 

Temperature 

TI (XI, t l = O )  = Tof 

T9 (x'=O, t l)  = Tw' (t') 

T' (xl=L', t') = T b  

P r e s  sur  e 

= o  
t' =o 

initially isothermal 

heated wall x1 = 0 

isothermal wall XI = LI 

no body forces 

Density 

P. 0' 
p' (XI, t' =O) = - R'Tot equation of state (12) 

The thermal boundary condition at the heated wall is shown as a prescribed 
temperature history. 

scribed heat flux boundary condition at x = 0 can also be used in Model 1 as 

seen later in Section 4. 

This is done for simplicity of presentation. A pre-  

Equations (5) through (12) formally define the mathematical Model 1 for 

analysis of thermoacoustic convection in law gravity. 

2 -7 



2.3.3 Concentric Cylinder Radial Model 

The schematic below depicts the flow situation for Model 2. 

Heater 

Compress ible 
Fluid 

r1 = r1 > 0 
0 

Cylinder 

r' = L' 

W a l l  

The governing equations for this configuration are again derived from the full 

system (1) - (4) (see Refs. 7 and 8).  In te rms  of dimensional variables ( I )  the 

equations take the following form. 

Momentum 

Continuity 

Energy 

. 
2-8  



State - 

The nondimensional form of these equations a r e  actually used in the computa- 

tion as in Model 1. Dimensional analysis is discussed in Section 2.4. 

The initial and boundary conditions for Model 2 a r e  expressed mathe- 

matically as follows: 

Velocity 

I u'(r',t'=O) = 0 initially at res t  

no slip at walls (rf=rbg t') = ug (r'=Ll ,ti) = 0 

Temperature 

P r e s  sure  

T1 (rl, t l = O )  = To1 

T1(r l=rol , t l )  = Tw'(tl) 

I initially is 0th p r mal 

isothermal wall 
or 

adiabatic wall 

prescribed temperature 

prescribed heat flux 
or 

no body forces 

2-9 
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Dens it y 

.po! 
pr(rl,tf=O) = - R' To' equation of state 121 1 

Equations (13) through (21) formally define Model 2 for analysis of thermoacoustic 

convection in 16w gravity. 

2.4 DIMENSIONAL ANALYSIS 

Dimensional analysis is commonly used for a variety of scientific 
problems. 

dimensionless parameters associated with a particular problem. 

cedures for performing dimensional analysis vary considerably among authors. 

Ostrach (Ref. 10) and Hellums and Churchill (Ref. 11) present two approaches 

for dimensional analysis of natural convection problems. 

uncertainties in choosing reference values for natural convection probelms - 
the characteristic time and characteristic velocity of these systems a re  not 
always obvious. 

the isothermal sound velocity of the gas is used as the characteristic velocity, 

The characteristic t ime used is the time required for a wave to  travel the 

length of the container. 

method of Ostrach (Ref. 10) by equating the inertial forces and pressure forces 

in the momentum equation. 

It' is basically a formal mathematical proceddre which yields the 

The pro- 

There a r e  two major 

Since the present problem involves acoustic velocity waves, 

This same reference velocity is also obtained using the 

The following dimensionless variables a r e  now introduced: 

Model 1 is used here  t o  illustrate the dimensionless form of the differ- 

ential equations, 

dimensionless form in all computation. 

Model 2 is very similar and is not shown here, but is used in 

The expressions in Eq. (22) a r e  

2-10 



substituted into Eqs. (5) through ( 8 )  and the boundary conditions Eqs. (9) through 

(1 2). 
and boundary conditions. 

Algebraic manipulation then yields the following dimensionless equations 

Momentum (Dimensionless) 

Continuity (Dimen s io nl e s s ) 

g + +-(pu) = 0 

Energy (Dimens ionle s s ) 

- State (Dimensionless ) 

P = p T  

Initial Conditions (Dimensionless) 

u(x,t=O) = 0 T(x, t = O )  1 p(x,t=O) = 1 

Boundary Conditions (Dimens ionle s s ) 

u(x=O, t) = u ( x 4 ,  t) = 0 

T(x=O,t) = T,(t) 

T(x=l , t )  = 1 

2-1 1 



The dimensionless groups which appear in the equations are: 

‘cp’ 
Prandtl Number Pr = Moinentui>i Diffusion 

Thermal Diffusion 

( 2 9 )  
L p; Inertial Forces 

P’ Viscous Forces Reynolds Number Re = 

Peclet Number Pe = Re Pr Convect ion 
Conduction 

C l  
Ratio of specific heats y = 2 cv’ 

For the present problems of interest, y and Pr a r e  of order O(1) and Re 

is O(10 ). 
computation. 

6 This dimensionless form of the equations is used in all numerical 

This completes the formal development of the mathematical models used 
in this study of thermal convection in low gravity. 

algorithms a r e  now presented. 

The numerical solution 

2-12 
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Section 3 

NUMERICAL SOLUTION METHOD 

3.1 METHODS SURVEY 

The following brief review of the literature is not intended to be a complete 
survey; only the work more pertinent t o  the present problem is reviewed. 
excellent articles were examined during this study, but only those directly r e -  

lated to  the current problem of numerical computation of natural convection 
are presented her e. 

Many 

Hellums and Churchill (Refs. 12 and 13) have applied finite difference 

calculations to  natural convection for several  types of problems. 

time -dependent finite difference approximations were made to the conservation 
equations for mass, momentum and energy. Gravity was the only driving force 
considered, 

a computer should undergo a rigorous stability analysis and that the convection 
te rms  must be handled with much care. The Hellums -Churchill technique uses 
alternating forward and backward differences depending on the direction of the 

fluid flow, 
ment with previous results was excellent in some regions and good in others. 

Explicit, 

This work has pointed out that any method which is t o  be used on 

Computer storage and run time were found to  be moderate. Agree- 

Fromm (Ref. 14) presents some numerical results for the Bdnard problem 

of heating a fluid layer f rom below in a gravity field. 

approximation is made and the governing equations are transformed to  the 
vorticity-stream-function form. Central finite differences are used in the 

numerical solution algorithm. 
7 the critical value to  R a  = 10 . 

number are given and excellent comparisons are made with previous analysis 
and experiments. 

The classical Boussinesq 

Cases examined include Rayleigh numbers from 

Correlat$ons of heat transport with Rayleigh 

3-1 



Clark and Barakat (Ref. 15) have applied numerical computation to  the 

problem of two-dimensional, laminar, transient, natural convection of a fluid 

in a rectangular container with a free surface. 
methods were applied with success to the problem of a vapor-liquid interface. 

They concluded, however, that implicit methods may be preferred if only steady 

state results a r e  needed. The theoretical results are compared to experimental 
measurements from the literature and indicate qualitative agreement. 

Explicit finite difference 

Wilkes and Churchill (Ref. 16) studied natural convection of a fluid con- 

tained in a long horizontal enclosure of rectangular cross  section. 

dimensional motion was assumed. 

solved numerically by alternating direction finite difference methods. 
pressibility effects were neglected, the density was allowed to  vary only in 

the buoyancy term,  and gravity was the only driving mechanism considered. 
Numerical results for several cases (heating from the side) were compared 

to  experiment with good agreement. 

difference methods can adequately simulate the thermal convection problem of 

heating from the side. 

Two- 
The vorticity and energy equations were 

Com- 

Their results demonstrate that finite 

Larkin (Ref. 17) gives a brief but important discussion of the numerical 

conservation principles which must be observed in solving the continuity 

equation. 

balance in a closed system. 
form of the coefficient matrix. 

He presents an implicit technique which preserves an overall mass 
It is easy to  implement due to  the tridiagonal 

Samuels and Churchill (Ref. 18) used finite difference methods to  compute 
hydrodynamic instability due to convection in a horizontal rectangular region 

heated from below. 
Prandtl numbers and length-to-height ratios. 

work was to assess  the usefulness of finite difference techniques for computation 

of natural convection. 

vorticity equation and an  energy equation were treated and an  implicit alternating 

direction finite difference method was used to solve the equations. 

Critical Rayleigh numbers were determined for a ser ies  of 

One of the major objectives of the 

The governing equations were transformed such that a 

Calculated 
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critical Rayleigh numbers were found to  be in excellent agreement with other 

analytical results for Prandtl numbers greater than unity. F o r  Prandtl numbers 
less than unity, the calculated critical Rayleigh numbers exhibited a dependence 

on Prandtl number, a fact not predicted by linearized theory. 

initial conditions were imposed, a non-unique set  of solutions were obtained. 

However, if a n  asymmetric initial condition was imposed, the calculation 
always converged to  a single unique flow pattern. 

If symmetrical 

Aziz and Hellums (Ref. 19) present results of numerical calculation of 
The complete Navier -Stokes three-dimensional laminar natural convection. 

equations are transformed and expressed in t e rms  of vorticity and a vector 

potential. 

the parabolic equations (vorticity and temperature) and a successive over - 
relaxation technique is applied to  the elliptic stream function equation. 

parisons with previous works for two-dimensional problems a r e  made and 

the conclusion is reached that the authors' method has important advantages 

in speed and accuracy, 
the three -dimensional natural convection problem, 

A finite -difference method using alternating directions is used for 

Com . 

This is the most complete work that has been found on 

Torrance (Ref, 20) presents an  excellent summary, review and compar- 
ison of finite -difference computations of natural convection. 

methods, were compared for calculating two-dimensional transient natural 

convection in an enclosure. Both implicit and explicit procedures were con- 

sidered. Consideration was given to  stability, accuracy and conservation of 

each method and it was concluded that no one method has all the features that 

are desirable. An explicit procedure developed by Torrance was shown to  be 

conservative and stable without a restriction on the spatial mesh increment. 

A tentative conclusion reached by Torrance is that, (1) the M o r t - F r a n k e l  
method will require less computer time if the mesh size restriction can be 
satisfied, (2) the Torrance method should be used i f  the results are inter - 
preted in the sense of a large truncation error .  

cellent comparison chart of the type of difference forms which variozls authors 

have used. 

Five numerical 

The paper presents an ex- 
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Plows (Ref. 21) presents numerical solutions for the laminar Be'nard 

problem. 

utilizing centered "leapfrog" differences for first order derivatives and a 
Dufort-Frankel pattern for second derivatives. 

to  determine Nusselt numbers and roll patterns for Rayleigh numbers between 
2000 and 22,000 for a range of Prandtl numbers. 
Rayleigh number calculations a r e  presented and compare favorably with 

previous analytical and experimental studies. 

The Boussinesq-type equations a r e  solved by a numerical scheme 

An iterative scheme is used 

Nusselt number versus 

Schwab and DeWitt (Ref. 22) conducted a numerical investigation of f ree  
convection between two vertical coaxial cylinders. 

partial differential equations were converted to  finite-difference form and 

solved using an alternating direction implicit procedure. 

of steady state contour maps, a r e  presented for several combinations of Prandtl 

and Grashof numbers. 

boundary layer flow was found to exist in the cavity for Rayleigh numbers 

greater than 5 x 10 . The variation of steady state Nusselt numbers with 

Prandtl and Rayleigh numbers and with geometric ratios was also briefly 

discus s e d. 

The coupled, nonlinear, 

Results, in the form 

Among the conclusions reached is that a fully developed 

3 

Cabelli and DeVahl Davis (Ref. 23) present a numerical study of the 
Be'nard cell problem for the case where buoyancy and surface tension a r e  

coupled. 

function form and a surface tension boundary condition is imposed on the free 

surface. 
direction implicit finite-difference scheme and the stream-function equation 

was solved by over -relaxation. 

full conservation equations with surface tension effects coupled to buoyancy. 
The numerical results indicate that surface tension effects encourage the 

natural fluid motion in liquids. 

details of their calculations. 

The conservation equations a r e  expressed in the vorticity-stream 

The vorticity and energy equation were solved with an alternating 

This appears t o  be the first work to  solve the 

The reader is referred to this reference for 

Heinmiller (Ref. 24) has developed a mathematical model of thermal 

stratification and natural convection occurring in supercritical oxygen under 
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low -gravity environments. 

solution of the primitive equations for conservation of mass, momentum and 

energy. The Ebussinesq assumption is not made and real  gas properties a r e  

used throughout the computation. This work appears to  be among the f i rs t  to  

solve the full compqessible form of the equations for a two-dimensional problem. 

The numerical model was used to  successfully simulate a pressure collapse in 
the Apollo 12 oxygen storage system due to  an acceleration change. 

His model uses an explicit finite difference 

Barton et al. (Ref. 25) also developed a numerical model for analysis 
of the Apollo spacecraft oxygen tank system. A numerical algorithm known as 

the General Elliptic Method (GEM) is developed for solution of the f u l l  conserva- 

tion equations in terms of the primitive variables. This method was a lso  applied 
with success to  the Apollo oxygen tank stratification problem. 

Thuraisamy (Ref. 6) presents a detailed one-dimensional model of 

natural convection in zero gravity. His aim was t o  analyze the flow of super - 
critical oxygen in the Apollo tanks. His model is a one-dimensional radial 
segment through two concentric cylinders - the outer cylinder being a tank 

wall and the inner cylinder being a heater. 

thermal expansion effects which a r e  the subject of this report. 

work will be given in Section 4 where comparisons with present calculations 
a r e  given. 

The model includes pressure and 

Details of this 

Larkin (Ref. 5) was the first to apply numerical computation to  the 
governing equations including compressibility effects. 

dimensional flow of a perfect gas in a zero gravity confined container. 

finite differences were used on the momentum and energy equations and an 
implicit method was applied to  the continuity equation. 
the pressure wave motion is acoustical in nature. 

r i se  a r e  greatly increased over those obtained with conduction alone. 

analysis will be detailed in Section 4 and comparisons will be made to the present 

work. 

He considered the one - 
Explicit 

The results show that 
Heating rates and pressure 

Larkin's 
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A study of other applicable numerical methods was made during this 
literature survey. 

general problems but application to  thermal convection is lacking. 

9 and 28 through 30 contain a variety of finite difference techniques for applica- 

tion to  general fluids problems. 
of the conservation law approach to  the numerical solution of the Navier -Stokes 

equations. 
form for solution of hyperbolic equations. 

analysis for a finite djfference solution to  the Navier -Stokes equations. Brunson 

and Wellek (Ref. 30) present a mathematical discussion of the numerical stability 

of a Dufort-Frankel scheme for solving systems of parabolic equations. 

Textbooks such as Refs. 26 and 27 a r e  excellent for 

References 

Cheng (Ref. 9) presents a n  excellent discussion 

Lax and Wendroff (Ref. 28) a l so  discusses the conservation law 
Campbell (Ref. 29) presents a stability 

3.2 FINITE-DIFFERENCE EQUATIONS 

An explicit finite difference scheme will be applied to the present 

thermal convection problem. 

study the transient behavior of the problem. 

unsteady equations allows a forward-marching -in-time algorithm to  be employed. 
Forward time differences a re  used on the unsteady terms and space-centered 
differences a r e  used on all space derivatives except the convection t e rms  where 

a rlflip-flop'f forward-backward scheme is used. Although this scheme is only 

first -order, it should be sufficiently accurate for the qualitative result sought 

here. 
algorithm (see Appendix B). 
because it is simple, easy to program and is non-iterative in nature. 

The unsteady form of the equations a r e  used to 
The explicit approach with the 

This was verified by comparing results to  a second-order Dufort-Frankel 
The explicit formulation was chosen primarily 

A node centered spatial mesh, shown in the schematic on the next page, 

is used to  write the difference equations. 
X. = (i - 1/2)Ax. 

In this grid, xi denotes space point i; 

The grid spacing Ax is constant. 1 
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Boundary Conditions 

x '  = L', 
y--- Node Center 

i = k d '  Node Boundary 
____)c___ 

i + + 
U 
c\ 

Node 1 .L(-----i 

R 
' L i  - + 

i=2-'  
V 

nfx i=l-' 
x'= 0 U + 

n 

Heated W a l l  

X I 
All quantities, (u, pa T, P), a r e  defined at node centers, and differences a r e  

taken across  a node using the ''half -increment" quantities. This approach 
offers better conservation features than a scheme based on mixed node- 

center/node-boundary differences. A similar grid system was used by 

Heinmiller (Ref. 24). 

boundaries by interpolation over node centered variables, i.e., 

The half -increment quantities a r e  defined at node 

Time derivatives a r e  approximated by forward differences as 

follows: 

a T -  
a t  -cv 

n+l n 'i -Ti 
At (33) 
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Where i denotes space point x n denotes time t and n t l  denotes the new i' n 
First order space derivatives except convection terms a r e  n+l* time t 

approximated by central differences, 
i 

n n 

2A.x 
8~ pitl - pi-l - ax (34) 

Second order space derivatives a re  approximated by the usual centered 

form; 

4- u-n n n 
i t1  i i-1 - 2u 2 U a u  - 

a x  2 -  (Ax12 
(35) 

The convection terms must be handled in a special manner in the explicit 

approach. 

regardless of the step sizes (Ref. 26). 
Larkin (Ref. 5) have used the following tlflip-flopgt method successfully. 

If space-centered differences a re  used, the method becomes unstable 

Hellums and Churchill (Ref. 12) and 

- Tn 
U. 
1 

This forward -backward alternating direct ion 

ifu; > 0 

scheme is used depending on the 

direction of the recirculating flow. 
conditionally stable. 
and energy equations a re  differenced according to this scheme. 

Reference 12 shows that this method i s  

In the present work, the convective terms in the momentum 

The explicit differencing of the continuity equation requires special 

attention. As pointed out by Larkin (Ref. 17), str ict  mass conservation 
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laws must be obeyed numerically if meaningful results a r e  expected, However, 
tlic usual centercd difference explicit method which would numerically conserve 

mass is unconditionally unstable, 

equation in order to  bypass this restriction. 
method similar to  that of Heinmiller (Ref.24) was devised which is conditionally 

stable and conservative. 

form of the momentum and continuity equations. The momentum equation is 
solved first t o  yield the pu product at the new time point. This pu product at 
the new time is then central differenced in the continuity equation to yield the 

updated density p. 

Larkin used an implicit method on this 

In the present work, an explicit 

The basis of the qethod is the use of the divergence 

The velocity is then computed from (pu)/p. 

Special forms of the difference equations a r e  used at the nodes adjacent 
to a wall, 

F or  example ; 

This is necessary for accurate handling of boundary conditions. 

Forms such as this a r e  derived by computing node boundary points using 

linear interpolation and the differencing across  the node using the known 

boundary conditions , 

A complete listing of the difference forms used in this work a r e  shown in 
figs. 2, 3 and 4 for the momentum, continuity and energy equations respectively. 

In this figure, i denotes space node xi, n denates t ime point t,: (i=l and i=k 

a r e  the nodes adjacent to  a wall). 
Model 1 only since those for Model 2 a r e  very similar. 

The finite difference equations are shown for 

A Dufort -Frankel numerical scheme was also developed during this 

study. Details a r e  given in Appendix B. 
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Momentum Equation 

Finite Differewe Form 

Difference Equations 

n n  n 
i = 2 ,  ..., k -  1 1 - 2ui t ui - 

(&I2 
- 'it I - 

n 
i 

n 

u ( 0  

ui 1 0 

i = 2 , . . . ,  k - 1  

Fig. 2 - Finite Difference Form of Momentum Equation 
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Continuity Equation 

Finite Difference Form 

Difference Equations 

i = 2 ,  ... k -  1 
A 2Ax 

A 

.n+I n+l n+l 
U. = (PU)i /p 1 i 

Fig. 3 - Finite Difference Eorm of Continuity Equation 
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Energy Equation 

Finite Difference Form 

Difference Equations 
n4-1 u n t1  

n t l -  i t 1  i - 1  U 

6x(u)i - 2Ax 

6x(u)1 - 2& 

ntl n t l  
n t  1- u1 t'2 

n 
dx(TIi = 

T:t 1 - TY 
Ax 

Tn - Tf- i 
Ax 

T; - TT; 

hx 

TY- Tn 
W 

i = 2 ,  ..., k - 1  

n < O  

un > 0 

i U 

1 -  

i = 2 ,  ..., k - 1  

T t  - Tk 
$& 

Tr+ - 2 T: t Ty- 
i = 2 ,  ..., k - 1  

(Ad2  

Fig. 4 - Fin* Difference Form of Energy Equation 
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3.3 NUMERICAL STABILITY 

The explicit finite difference scheme just presented is a conditionally 

stable method. 
solved will approximate the solution of the differential equations. 

stability cri teria a r e  not met, unrealistic solutions or no solutions at all 
wil l  result. 

of the time increment At. 
mesh (Ax) restriction and only accuracy dictates the size of Ax. 

If certain cri teria a r e  met, the difference equations that a r e  
If the 

The stability criterion of this method is a restriction on the size 
The stability of the method is free of a spatial 

The time step restriction for this method was determined by using the 

available literature and by experimenting numerically. 
necessary since a mathematical analysis of stability for nonlinear problems 

remains beyond the state of the art. 

pressure wave propagation contributes significantly, the time step should be 
determined by the time required for a pressure wave to  propagate over a 
distance of one node length Ax, Le., 

This approach was 

For the present problem, in which 

where c1 i s  the velocity of sound. 
bolic limit known as the CFL condition (Ref. 26). 
shown this to be the governing stability cri teria for the present problem. 

This is recognized as the familiar hyper- 
Numerical experiment has 

Since Iull<<cf and c1 = % , / y m  for a perfect gas, we have 

In terms of the dimensionless variables (Section 2.4) we get the following 

stability requirement. 
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AX 
A t  . 

For  moderate values of Ax, Le., 20 mesh points, At is of the order of 0.01 
-4 which corresponds to  about 10 Even for a machine 

of the capability of the Univac 11 08 this problem is  not trivial in terms of run 

time, 
restriction. 

wave motion that restricts the time step size, 

larger time steps, may bypass important physical behavior. 

seconds of real  time. 

It may appear that an implicit procedure would relieve this time step 

Note, however, that it is still  the physical phenomena of acoustic 

An implicit method, using 

3.4 SCALING PRINCIPLES 

A scaling procedure developed in Ref. 24 and used in Ref. 6 has been in- 

corporated into the present numerical algorithm to lessen the severe time step 

requirement. This procedure is now briefly outlined including its applicability 

to  the present problems and limitations on the magnitude of scaling which is 

permissible. 

The basic problem ar ises  because diffusion processes occur on a time 

scale much larger than that of acoustic wave motion. The purpose of scaling 
is to  speed up certain of the physical processes occurring in the fluid without 

disturbing the thermodynamic state of the fluid itself. 

is based on familar similarity laws of fluid mechanics (Ref. 8). 
less  groups which apply to  the present problem are: 

The following procedure 

The dimension- 

' LSU ' Reynolds number Re =c ru' 

'C * Prandtl number Pr = ? 
k1 

Nusselt number Nu = k$-&, 

U'I Mach number M = - 
C' 
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The objective is to  increase the rea l  time/computer time ratio by a factor 
of s such that each time step At  that is used for computation will correspond to  

a rea l  time s At. 

similar, but not perfectly equivalent, to  our original problem, by the following 
transformations : 

To achieve this objective, we define a flow situation, which is 

q; = sq' 

u's = SUI 

where the s subscript indicates a flow variable in a new time frame. 

have the thermal conductivity, viscosity, heat input and flow velocity increased 

by a factor of S. 

to real time, st. 

and density, remain unchanged in the new time system. 

that each of the dimensionless groups in Eq. (41), except Mach number, a r e  
the same in bath time frames. 

of s since the properties of the fluid which determine the sonic velocity have been 

preserved. 

computation t ime step At, is unchanged, but the real time At  is increased. 
satisfies our original objective. 

We then 

The new time frame t s  in which we compute will now correspond 

The thermodynamic state of the fluid, temperature, pressure 

We must now note 

W e  have increased the Mach number by a factor 

Since the sonic velocity is unchanged, the size of the permissible 

This 

W e  can assess  the limitations on this scaling procedure by considering 

the differential Eqs. (5) and (7). 
the unsteady t e rms  and the diffusion te rms  by a factor s, or equivalently 

dividing the convection te rms  by s. 

in which the convection te rms  are 

equations. 
convection terms. Fo r  S = 1 we have a n  exact simulation of the problem and 

as s approaches infinity, we approach as a limit the pure conduction solution 

for a compressible fluid. 

The scaling method essentially multiplies 

The procedure is thus valid for problems 

relative to  the other te rms  in the 

The size of the factor s is then a function of the llsmallnessllof these 
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In the present analysis, calculations a r e  made both for problems in 

which the convection terms dominate and for problems in which they a r e  

relatively small. 

is discussed in Section 4 where some results for typical problems a r e  given. 

The size of the scale factor used in actual calculations 

3.5 COMPUTER PROGRAM 

The finite difference method given in Section 3.2 was programmed in 

FORTRAN V language for a Univac 1108 Exec 8 digital computer. 

equations for Model 1 and Model 2 were coded in the same program, termed 
TG1, with optional flags to control the program flow. 
calls subroutines is used to  allow complete flexibility of use. 

output is performed in separate subroutines and each of the four basic equa- 

tions, momentum, continuity, energy and state, a r e  coded in individual sub- 

routines. A l l  data a r e  input with punched cards and all output data a r e  in 

printed page format. 

is included. 

The 

A driver program which 
All input and 

Provisions for running a problem in parts (timewise) 

Details of the TC1 program a r e  given in Appendix A. 
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Section 4 

DISCUSSION OF RESULTS 

4.1 SCOPE OF RESULTS 

This section summarizes the results which have been obtained to date 

for the one-dimensional models of thermoacoustic convection. 

of the sample calculations were to 

The objectives 

m Qualitatively determine the importance of thermoacoustic 
effects as a heat transfer mechanism. 

0 Assist  in the analysis of the data from the Apollo 14 Heat 
Flow and Convection Demonstration. 

0 Verify the numerical calculation method which may be 
used for analyzing other types of convection encountered 
in dpace processing. 

These objectives a r e  met by performing calculations, using the TCI program, 

for two representative problems. 

with helium g a s  as the fluid. 
is subjected to  an instantaneous temperature step. 

(1) solutions exist in the literature which can be used to  verify the model and 

numerical method, and (2) this case should provide an upper limit on the 
severity of the thermal boundary conditions. 

and constrasted to those of Larkin (Ref. 5 )  and Thuraisamy (Ref. 6). 
solution is shown to  converge smoothly to an  accurate steady steady given by 

an  analytic expression. 
established for this boundary condition. 

Case 1 consists of two infbiite parallel plates 

One wall is maintained isothermal and the other 
This case was chosen because; 

Results for case 1 a r e  compared 

The 

The importance of pressure convection is also 

Case 2 consists of a cylindrical configuration with carbon dioxide as the 

The dimensions of the container and the fluid properties correspond to fluid. 
those of the Apollo 14 Heat Flow and Convection Demonstration (HFC). The 
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reader should refer to  Ref. 1 for details of the HFC experiment. 

of thermal boundary conditions are  applied to case 2 - an instantaneous 

temperature step, a constant heat flux and a wall temperature-time history 

that corresponds approximately to  the Apollo 14 HFC boundary condition. 
Steady state convergence is obtained for boundary condition 1 and compared 

t o  an analytic steady solution. 

t o  a pure conduction analysis of the HFC configuration. 

Three types 

Results for boundary condition 3 a r e  compared 

All of the results a r e  shown in dimensionless units except HFC case 3 

solutions which a r e  given in dimensional form in the International System of 
Units. 

4.2 PARALLEL PLATE MODEL 

The first case considered uses the Model 1 equations with helium gas 
The gas is initially at res t  with uniform temperature. as the fluid. 

to, the x = 0 surface is instantaneously raised to twice the initial temperature. 

The problem configuration and fluid properties a r e  illustrated in Fig. 5. 
Larkin (Ref. 5) and Thuraisamy (Ref. 6)  have also applied finite-difference 
calculations to  this problem and comparisons to their solutions are made 

whenever possible. 

At time 

The steady state solution to  this problem can be obtained analytically. 

At steady state the fluid motion will vanish; thus we have 

where the subscript indicates a steady state value. 

should then approach the solution of the conduction equation with the prescribed 
boundary values. This solution is 

The temperature profile 

Tss = 2 - A  
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x - di r ec t ion 

T = 2 T o  
W 

Properties of Helium 

I Property 

PO 

PO 

T 

I.1 

C 

k 
Y 

0 

V 

m 

Value 

1 5 . 3  cm 
1.9 gm/cm3 

6 2 1.01 x 10 dyne/cm 

273 OK 

1.875 x gm/cm-sec 
0.78 3 cal/gm-OK 

3.44 x cal/crn-sec-OK 
1.66 

4 7.58 x 10 cm/sec 

TO 

Fig. 5 - Configuration for Infinite Parallel Plate Model 
of The r moac ou st ic Convection 
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From the momentum equation we then require 

= o or  Pss = constant 

ss ax 

The value of this steady pressure can be found from the ideal g a s  equation of 

state by using the m a s s  conservation condition that 

We can integrate the p = P/T profile to obtain 

- 1.44 
ps!3 = 1G-Z - 

and 
1.44 = -  

p s s  2 - x  

(45) 

A scale factor s = 1 was used to calculate the transient solution to this 
problem to achieve an exact numerical simulation of the problem. 
solution profiles a r e  illustrated in Figs. 6-8. 
temperature at x = 0 induces an expansion of the gas due t o  i ts  compressibility. 

This expansion creates fluid motion in the t x direction and the waves propagate 
to the x = L surface and then reflect. 

influenced by the reflections of this disturbance from each of the plates. 

The unsteady 
The sudden change in the wall 

The subsequent velocity field is then 

Figure 6 shows the calculated dimensionless velocity profile as a function 
of time for the first 400 time steps ( A t  = 0.025). 
nature of the wave motion is seen. 
units of dimensionless time. 
dimensionless units is 2/\/t and for helium is 1.55 units. 
a r e  thus acoustic. 

The maximum amplitude of these first few waves is approximately 0.02 units. 

Larkin's calculation yields an amplitude of approximately 0.2 units with a period 
of 1.55 units. 

From this figure the oscillatory 

The period of the calculated waves is 1.55 

The acoustic wave period in this system of 
The calculated waves 

This was also confirmed by Larkin's (Ref. 5) calcdations. 

. 
The present calculation thus yields an order-of-magnitude lower 
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amplitude than previously predicted. 
numerical method to solve this problem and also calculated 0. 

Thuraisamy (Ref. 6) used Larkin's 

for the amplitude. 

Pri'vate communication with both Larkin and Thuraisamy and with S. W. 

Churchill of the University of Pennsylvania has resulted in the conclusion that 
the differences in the numerical method of Larkin and the present method a r e  
probably responsible f o p  the notea discrepancies. The prdsent calculation of 

0.02 units appears to be more correct for the following reasons, 
1 

The quantity u /e is a Mach number and would be expected to be 
0 

"small1' (relative to Mach 1) for natural convection fl'ows. 

0.02 appears to be more physically realistic for the present problems than 0.2. 

This is further confirmed by analyses on the similar problem of Sondhauss 
tubes by Feldman (Ref. 32) which indicated that the Mach number was always 

less  than .06.  

difference method - The Dufort Frankel scheme - was developed at Lockheed 

independently of the present method. As discussed in Appendix B, this Dufort 

Frankel method also produced a calculation of approximately 0.02 for the wave 

amplitude. For these reasons the results of the present analysis shown in Fig.  6 
a r e  considered to be the. true solution for the velocity profile. 

A Mach number of 

To checkout this discrepancy further, a second order finite- 

The calculated temperature profile at t = 1000 units is shown in Fig. 7. 
The present calculation is in excellent agreement with those of Larkin and 

Thuraisamy. The solution at t = 1000. is seen to-be much closer to the steady 

state than a conduction solution which neglects thermally induced fluid motion. 
This figure indicates that thermoacoustic convection is an effective transfer 

mechanism and greatly inhances the rate of heat transfer. 

note that the temperature profiles calculated by the prese 
excellent agreement with those of Larkin while the- velocity amplitude calcu- 
lations a r e  quite different. 

It is interesting to 

method a r e  in 

Figure 8 shows the calculated density profile and mean pressure distribution 

for this problem. 
steady state profile. 

to Larkin's result. 

The density distribution at t = 1000 has almost achieved its 
The spatially averaged pressure versus time is compared 

The agreement is excellent with only a slight discrepancy 
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1.6 

1.4 
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1.0 

0 Larkin (Ref. 5)  

a Thuraisamy (Ref. 6 )  

- Present Analysis 

. 

at t = 1000 

Conduction - Only 
Solution at t = 1000 

0 .2 .4 .6 .8 1.0 

Distance, x'/L' 

Fig. 7 - Temperature v s  Distance at Time t' = 0.2 Seconds 
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4 t Solution at 
1.2 

Con stant Density 

1.0 
-0 e 

Steady State 

0.4 I W I 1 1 I 1 
0.0 0.2 0.4 0.6 0.8 1.0 

Distance, xt/Ll 

1.3 

1.2 

1.1 

1.0 

0 Larkin Solution 

Present Analysis 

Rayleigh-type Solution 
I 

0 200 400 600 800 1000 

Time, tt vE/Lt 0 

Fig, 8 - Density and Pressure Profiles for Infinite Plate 
Problem (Helium, Tw = 2)  
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at the early times. 
by a Rayleigh-type solution. 
all convective te rms  in the energy equation and computing mean pressure 

from t,he integral of the temperature profile with density constant, Le. no 
convection. 

pressure r ise  is clearly seen. 
corresponds to approximately 0.2 second of real time. 

pressure in this short time may appear physically unrealistic, however, we 

should recall the severity of the thermal boundary condition (Tw = 2T0). 
result thus represents an upper limit on the rate  of pressure rise due to 

the r moac ou stic effects. 

Note the large increase in pressure over $hat predicted 
The Rayleigh golution is obtained by dropping 

The strong influence of thermoacoustic convection on the rate  of 

It is interesting to note that t = 1000 units 
The 30% rise in 

This 

The calculations thus far have established thpt thermoacoustic convection 
can greatly enhance the rates of heat tranefer and pressure rise. Reasonable 

agreement with previous solutions for the unsteady flow profiles has also been 

illustrated. To verify the steady state convergence of the method, the helium 
problem w a s  solved with a scale factor s = 100 to achieve a lllargell number of 
t ime step with a reasonable amount of computer time. With this scale factor, 

minute details of the unsteady profiles will be missed but the steady state 

should not be effected. 
A plot of Nussell number versus time shows that a steady state (Nu = 1) is 

approached. 

Figure 9 illustrates the convergence of the computation. 

The definition of the unsteady Nusselt number used here is 

is the dimensionlesa temperature gradient at the heated wall 

( x  = 0) and The 

figure shows that the temperature profile near the x = 0 wall approaches its 
steady state in approximately 1000 units of time. 

ATss is the steady state temperature difference Tw F To. 

The mean pressure profile a l so  smoothly approaches the t rue steady 

Approximately 200,000 time steps or  50 seconds of real time value of 1.44. 
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was required to reach this constant steady state pressure. 
distribution however remained constant after 80,000 steps, thus we have that 

The spatial pressure 

The velocity profile calculated after 80,000 steps showed a mean of - 
after 200,000 steps was of the order of 10 
out a s  expected. 
three locations in the flow. 

calculation steps o r  50 seconds. 

and 
-12 , i.e. the wave motion is damped 

Figure 9 also shows the unsteady temperature profiles for 
These also remain unchanged after about 200,000 

The preceding calculations were carried out using 20 mesh points and a 
time of 0.025 units. 
profiles (Figs. 6, 7 and 8) required 3 minutes of computer CPU time on 

the Univac 1108 computer using a scale of s = 1 for exact simulation. 

The steady state convergence (200,000 time steps) using s = 100 required 15 
minutes of CPU time. These computer time/real time ratios a r e  not small 
but a r e  well within the practical limits of the current state of the art. 

sophisticated time-scaling methods could improve the computational economics 

even more. 

The numerical solution of this problem for the unsteady 

More 

t 

Several interesting results were found concerning assumptions which 

a r e  classically made in the numerical computation of natural convecfion. 

were explored to  determine the importance of viscous dissipation and pressure 

convection on the solutions of the energy equation. 
t e r m  in the energy equation is usually neglected in numerical solutions of 

natural convection. A.n order of magnitude analysis was performed and it 
appeared justifiable to neglect this term. To verify this assumption, the 
TC1 program was moqified t o  include the dissipation term 

These 

The viscous dissipation 

The infinite parallel plate problem was solved with d, included and compared to  
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the solution neglecting dissipation. 
This clearly verifies the relative unimportance of Viscous dissipation even 

for a severe therrnal boundary condition Tw = 2. 

Typical results at t = 1000 a r e  shown below. 

Quantity 

T ( x  = ,025)  

T ( x  = .975) 

p ( X =  .025) 

p ( x= .975) 

Nu 

Without 4 

1.9603 

1.02175 

0.6749 

1.305 

1.3266 

1.286 

With 6 
1.9611 

1.01 302 

0.6751 

1.306 

1.3261 

1.254 

Classical formulations of the thermal convection problem have utilized 

the Boussinesq approach which treats quasi-incompressible fluids as discussed 

in Section 2. Most studies which have considered compressible flows have not 
given full consideration to  the effects of spatial pressure gradients on the flow 

work in the conservation of energy equation. A simple, yet informative study 

was made to determine the consequences of such an  approximation on the un- 
steady flow profiles. 

Consider the energy equation Eq. (7) written in te rms  of the constant 
pressure specific heat C 

is then 

The flow work term for one dimensional geometry 
P' 

a P  t u a P  - - 
a t  a x .  (49 ) 

The present analysis to this point has included the full flow work t e r m  Eq. (49). 

For the purpose of evaluating the importance of the pressure convection t e r m  

u -  , the following modification was made. a x  
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P 

0 The u- is assumed small and is neglected. 

0 -  a is calculated from a spatial mean pressure and 
a x  

a t  
varies only with time. 

This approach follows a classical method of analysis for natural convection, 

This case was solved using the helium parallel plate problem to compare the 

solutions with and without pres  su r  e convect ion. 

Figure 10 shows profiles of pressure and temperature versus time with 
It is evident from these and without the u a P/ax pressure convection t e r m  

curves that the t e r m  cannot be neglected for the sample problem studied. 
There is considerable deviation in the unsteady profiles for both temperature 
and pressure. It is interesting to note that the temperature is higher without 

the pressure t e r m  than with it. 
constant across  the region between the two plates. 

gradient across  the fluid field, this implies that the pressure equalizes 

instantaneously; i. e., the pressure waves propagate at a n  infinite speed rather 
than at the t rue speed of sound. 

indicates that heat f rom the wall is being transferred to  the fluid faster due 
to the infinite wave speed. 

achieve their steady state much more rapidly if the finite wave speed is neglected. 

Neglect of 8 P/ax implies that the pressure is 
Since there is a thermal 

This is shown by Fig. 10 since this figure 

Note that both the pressure and temperature profiles 

For this sample problem we must conclude that neglect of pressure con- 

Although no general conclusion can be made from this vection is not justified. 

one case, we a r e  alerted to the fact that the finite wave speed may be important 

in studying convection of fluids which a r e  rapidly heated. A more detailed 
parametric study, with heating rate as the parameter, could be performed to  

determine the ranges of heating rate where this effect is important. 

4.3 RADIAL MODEL 

Computations a r e  presented for a second configuration which uses the 
Model 2 equations with carbon dioxide as the fluid. This model represents a 
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one-dimensional radial segment of the Apollo 14 Heat Flow and Convection 

Demonstration (Ref. 1) radial cell experiment. The HFC radial cell, the one- 

dimensional mathematical model, and a list of fluid properties used, is given 

in Fig. 11. 

configuration: 

Three types of thermal boundary conditions a r e  applied to this 

0 Instantaneous wall temperature step 

Tw' = 2To' , 

0 Constant heat flux 

= constant 

0 Wal l  temperature-time history prescribed 

Twt = f '  (t' ) 

These a r e  boundary conditions on the r = ro surface, Le., the inner cylinder 
which is a heater. 
heat flux case where an adiabatic outer wall is assumed. 
solution for this model using the Tw' = 

established analytically but not for the other boundary values. 

the ltone-dimensiona1'' motion will vanish a t  steady state, thus 

The outer wall is held isothermal except in the constant 

The steady state 
T 1 boundary condition can be easily 

0 

As with Model 1, 

= o  uss 

where the subscript indicates a steady state value. The temperature profile 

will then approach the solution of the conduction equation with the prescribed 

boundary conditions. This solution is 
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Fig. 1 1  - Configuration for Cylinder Model of Thermoacoustic 
Convect ion 
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From the momentum equation, we then require 

= 0 o r  Pss = constant 

ss 

The value of this steady pressure can be found from the ideal gas equation of 

state by using the mass conservation condition that 

to  obtain a n  infinite P We can integrate the p = - profil T 

steady state pressure. Taking ro as in Fig. 11, we get 

P 1.16 ss 

and 

sries for the steady 

A scale factor 8 = 1 was used for the case Tw = 2To to  examine the 

exact nature of the wave motion and profiles for the cylindrical model. 

unsteady flow profiles for this case a r e  given in Figs. 12 through 14. 
oscillatory velocity profile shown in Fig. 12 i a  similar to  that produced for the 

parallel plate model (Fig. 6). 

a maximum amplitude of 0.03 units, 
than the plate model and the waves themselves appear more '5rregularI1 than 

those in Fig. 6. 
cussed in Section 4.2. 

The 

The 

The period of the acoustic waves is 1.62 with 

The wave amplitude is slightly higher 

The amplitude is still of the order of 0.02 and not 0.2 as dis- 
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Figure 13 gives temperature, pressure and density profiles for the 
I I 

T = 2 T  case. The calculated temperature profile versus radial distance 
at t = 350 units again indicates the large increase in heat transfer compared 

to  a conduction only model. The thermoa.:oustic effect is also an important 

heat transfer mechanism for the radial configuration. 
seen to be approaching a t rue steady state condition which it achieves near  
t = 1000 units. The spatial mean pressure r ise  versus time is again con- 

siderably above that of a conduction (Rayleigh-type) solution but is not as  
drastic a r ise  as given by the plate model (Fig. 8). 

shown as a function of radial distance at t = 1000 and indicates the smoothness 

of the steady state profile. 

the analytical steady state given by Eqs. (50) through (53. ). 

W 0 

The solution profile is 

The density profile is 

These calculations are in excellent agreement with 

Figure 14 shows the spatial velocity distribution for t = 10 and t = 500. 

The smoothness of the profiles versus r indicates that the numerical method 

is very satisfactory for calculating the relatively slow flow of natural con- 

vection. 

lated to t = 100,000. 

tion of the convergence of the numerical method. The velocity continued to 

damp out with time to  a value about 10 . The temperature, pressure and 
density profiles at t = 100,000, or  about 2 seconds, agree with the analytical 

steady state to less than 0.1% deviation. 

This case was also run for a scale s = 100 and profiles were calcu- 
The damping out of the velocity profile gives good indica- 

-14 

The computation time for this case was 3 minutes on the Univac 1108 

Exec 8 using 20 mesh points and a t ime step At = .025, 

The next case for the radial configuration consists of applying a constant 
A dimensionless heat input heat flux boundary condition to the r = ro surface. 

was used as the boundary value. When applied to  the surface a rea  of the inner 
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cylinder, this corresponds to  a heat input of 5.7 watts which is the heater 
power used to drive the HFC radial cell experiment. The r = 1 surface was 

considered adiabatic for this case. 

A scale factor s = 1 was used to  calculate the unsteady flow profiles to 
t = 2000 units. 

flux case were much less  severe than the T ' = 2To' boundary condition. 

However, the unsteady temperature profiles for fluid points near the heated 

surface exhibit an interesting behavior as illustrated in Fig. 15. 
vection solution is compared to a conduction only solution at r = F 
heated surface) and r = 0.093 (near the heated surface). At the early times, 
the fluid at and near the heated wall gets hotter than by pure conduction in- 

dicating an  effective fluid convective mechanism. 

solution has "caught-up" and the local temperature calculated by conduction 

alone at these r-locations continue to r i se  with time. 
however, tends to steady out with time at these same r-locations since the 

convection mechanism is now transfering the incoming heat to further portions 

of the fluid. 
wall at later times. Although no direct comparison with flight data is possible 
for  this ease, the behavior is qualitatively the same as that obtained in the HFC 
flight experiment, Fig.  1. Computation time was six minutes. 

The velocity waves and pressure r ise  for this constant heat 

W , 

The con- 

(at the 
0 

At about t = 1200 the conduction 

The convection solution, 

This same behavior was exhibited at locations further from the 

A third type of boundary condition was applied to the radial configuration. 

This boundary condition consists of a profile of the r = r o  wall temperature 

as  a function of time. 

look-up and interpolation at each time step to obtain the psuedo-constant wall 
temperature. 

network analysis of the actual HFC radial cell experiment. 

thermal analysis program (Ref. 31) was used to calculate temperatures at 100 
points in the HFC radial cell including the inner cylinder heater post. 
heater post temperature profile was then used as an  input boundary condition 

to the radial model convection program. The outer wall temperature history 
as calculated by the conduction network showed this surface to be essentially 

isothermal. 

of Fig. 16. 

The computer program was modified to perform a table 

The profile that was used was obtained from a detailed conduction 

An inhouse Lockheed 

This 

These boundary conditions a r e  shown graphically in the top curve 
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A complete analysis of the HFC requires that 600 seconds of real time 
be simulated. 

lation of this model. 

due to the relatively slow heater temperature rise. 
culated spatial velocity distribution at t = 10 seconds and t = 600 seconds. 
the early times, flow velocities of the order of 0.5 cm/sec a r e  calculated. 
the simulation time increases these velocities a r e  damped out t o  values the 
order of 0.1 cm/sec at t = 600 seconds. 
velocities occur at rt/Ll = 0.4 t o  0 .5 ,  Le., near the center of the radial 

segment. 
also. 

than those obtained using the severe Tw'= 2T0' condition.. 

For this reason a scale factor s = 100 was used for the calcu- 
This time scaling should yield a quiet accurate simulation 

Figure 16 shows the cal- 
At 
As 

It is interesting to note that the peak 

This same behavior was exhibited at the intermediate time points 

The velocity wave motion for this case was much more highly damped 

Figure 17 gives profiles of the calculated temperature versus time at 
radial locations rt = . 69 cm and r t  = 1.65 cm. It should be noted at the outset 
that no flight data a r e  shown on this figure for the following reason. 
Apollo 14 HFC radial cell experiment uses liquid crystal temperature indicators 

which must be placed in view of a Data Acquisition Camera. 
the acquisition of data in the CO gas at radial locations from the heater post. 2 
The one-dimensional radial convection model discussed here is used to  obtain 
qualitative information related to the actual HFC demonstration. 

dimensional analysis, discussed in Section 5, is needed in order  to make com- 

parisons t o  actual flight data. 

The 

This prohibited 

A two- 

However, Fig. 17 does show a very familiar behavior. The calculated 

temperatures a r e  compared to  a one-dimensional (radial) conduction only 
solution using the same numerical method for the energy equation as used for 
the convection analysis. 

d eta il e d two - di men s i ona 1 (axis ymmet r ic ) conduction network ana ly si s us in g 

the Lockheed conduction program (Ref. 31). 
the convection solution profile r i ses  higher initially than pure conduction and 
then "flattens" out. 

predicted by pure conduction. 

Also shown for comparison a r e  the results of the 

At both the radial locations shown 

At t = 600 seconds, the temperatures a r e  lower than those 
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This is the type of behavior exhibited by the flight data comparison 

given in Fig. 1 and discussed in Ref. 1. 

differences shown in Fig.  17 a r e  not as large as the HFC flight da ta  analysis 

of Ref. 1 predicts. The largest difference in Fig. 17 is the order of 5% between 
convection and pure conduction. It is interesting to  note the large deviation 

between the one -dimensional and two -dimensional conduction solutions. This 
suggests that multi-dimensional convection may also be important in determ- 

ining the proper magnitude of the temperatures for this configuration. 

also emphasized that gravity convection was not included in the solutions shown 
in Fig. 17. The effects of gravity-driven convection would produce a larger 

deviation between the conduction and convection solutions of Fig.  17. 

convection plus thermoacoustic effects could possibly explain the behavior of 
the Apollo 14 HFC data. 

The magnitudes of the temperature 

It is 

Gravi ty  

The results of this model, displayed in Fig.  17, leads u s  to the following 
c onc lus ion s - 

0 

0 

0 

0 

Thermoacoustic convection effects can qualitatively 
cause the type of behavior seen in the Apollo 14 
HFC radial cell experiment 
The magnitude of the temperature differences between 
convection profiles and conduction-only profiles a re  
not as large as indicated by the flight data analysis of 
Fig.  1 

Multi-dimensional convection effects may be important 
for the HFC configuration and 

The coup1 ing of gravity - c onve c tion with the rmoac ous t ic 
effects could possibly explain the behavior of the HFC 
flight data. 
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Section 5 
CONCLUSIONS AND RECOMMENDATION3 

CONCLUSIONS 

Several conclusions a r e  evident from this numerical study of thermoacoustic 

convection in low gravity. 
thermoacoustic effects and the numerical method. 

These a r e  summarized below in two categories - 
\ 

5.1.1 Thermoacoustic Effects 

The sample calculations presented in Section 4 have shown that thermo- 

acoustic convection can be an important heat transfer mechanism. Specifically, 
it was shown that: 

e 
e 

0 

0 

e 

e 

0 

The thermally induced wave motion is acoustical. 

Thermoacoustic convection can greatly enhance the rate of 
heat transfer. 

The mean pressure r i se  in a confined fluid ia  more rapid 
due to  thermoacoustic effects. 

Pressure  convection effects on the conservation of energy 
can strongly influence the transient fluid behavior. 

The magnitude of the effects of thermoacoustic convection 
is a strong function of the severity of the thermal boundary 
conditions. 
Thermoacoustic convection can cause flow phenomena 
similar to  that observed in the Ap0110 14 HFC flight 
demonstration. 
Quantitative comparison of theory to  flight data will require 
a mult i - dimens ional analy s is of t her moac oust ic c onve cti on. 

The general conclusion is summarized as  follows: For low-gravity space 

processing situations involving confined compressible fluids which a re  heated, 
the thermally induced fluid motion should not be neglected in performing 

analytical design studies. . 
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5.1.2 Numerical Method 

The numerical calculation method used in this study has proved to  be 

It has been very satisfactory for computation of natural convection flows. 
shown that the method: 

0 Is conditionally stable with the hyperbolic limit restricting 
the time step size. 

0 Is sufficiently accurate for space processing applications. 

0 Converges to  an accurate steady state for the problems 
studied. 

0 Is computationally economic by state-of -the -art  standards. 
0 Is readily adaptable to  time scaling laws to  reduce the 

computer time/r ea1 time ratio. 

0 Should be applicable to multidimensional natural convection 
computation. 

0 Can be readily adapted to  the computation of other types of 
convection such as gravity driven or surface tension driven 
flows. 

The numerical computation technique derived in this study has a wide variety 

of applications in the analysis of convection in space manufacturing processes. 

5.2 RECOMMENDATIONS 

Recommendations resulting from this study a r e  offered for further in- 
vestigation of thermoacoustic convection for space processing applications. It is 

recommended that the future effort consist of two tasks conducted in parallel. 

Task 1 . Develop a two-dimensional/axisymmetric computer 
program for analysis of thermal convection of com- 
pressible fluids. 
Conduct a simple ground-based laboratory experi- 
ment to investigate thermoacoustic convection in 
confined fluids. 

Task 2. 

The two-dimensional program should include, as a minimum, gravity driven 

convection and thermoacoustic convection. The direction of the gravity 
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vector with respect to  the heated surface should be arbitrary. 
and cylindrical geometries should be included as options. 

method used for this one-dimensional study can be extended for use inthe two- 

dimensional program. 

and thermoacoustic waves to be analyzed. 

base for further extension to  analyze convection in space manufacturing 
processes such as crystal growth, melting and/or casting of metals and 

chemical separation processes. 

Both rectangular 
The proven numerical 

This capability will allow the coupling effects c t f  gravity 

The program will a lso provide a 

The experimental program should be kept relatively simple while r e -  

The experimental taining enough sophistication to  obtain quantitative data. 

apparatus should primarily consist of a container of gas, a heater capable of 

rapidly raising the gas temperature, a system of sensitive pressure trans - 
ducers, thermocouples, and recording instrumentation. The primary purpose 

should be to  detect the pressure waves in order to  study their amplitude, to  

measure gas temperatures for comparison with theory and to  investigate the 

coupling of gravity to  thermoacoustic effects. 

This parallel effort will provide additional insight into the thermoacoustic 

phenomena, provide experimental data for comparison with theory, and will 
provide a basic convection computer program for analysis of future space 

manufacturing systems. 
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COMPUTER PROGRAM (TC1) 
ONE-DIMENSIONAL THERMAL CONVECTION 



Appendix A 

A.l PROGRAM LOGIC 

The TC1 program consists of three main blocks: 

Input Reads and prints all input data and 
initializes parameters 

Calculation Solves momentum, continuity, energy 
and state equations 

output Prints convection solutions. 

A block diagram of the program is shown in Fig. A-1. 

The program is designed in subroutine form with a DRIVER program to 
Figure A-2 i s  a flow chart of the TC1 DRIVER control the subprogram calls. 

routine. 
been run on the Univac 1108 Exec 8 system, but can operate on any system 
having a FORTRAN IV or  V compiler and a t  least 10K of core memory. 

external storage devices a r e  needed. 

The coding i s  entirely in standard third generation FORTRAN. It has 

No 

Problems using Model 1 or  Model 2 (as described in Section 2 )  can be 

run with the TC1 program, 

English units. The program calculations a r e  all performed in terms of dimen- 
sionless quantities (see Section 2)  and the output is also in terms of dimension- 

less variables. All input is via cards which a r e  punched according to the input 
guide which follows. 

The physical input data can be either in metric or 

A.2 INPVT GUID.1 

All  input to the TCl program is via punched cards .  N o  tapes or  drums 
a r e  used. The input primarily consists of the following card groups. 
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m CALL INPUT Read and print all input data. 

CALL M ~ M N T M  

I 
Solve momentum equation 

Solve continuity equation 

I CALL ENERGY -1 Solve energy equation 

I CALL STATE I Calculate pressure (ideal gas). 

CALL PUTPUT J Print out convection parameters. 

Loop to march forward in time. 

Go  run another case. 

Fig. A-2 - Flow Chart of DRIVER Program for TCl 
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Card 1 - Title card 

2 - Program control flags 
3 - Physical parameters and initial conditions 
4 - Thermal properties 

5 - Boundary conditiops 

In addition, there a re  other optional cards a s  follows: 

Card groups 6-7 
Card groups 8-11 
Card group 12 

Variable boundary condition tables 

Res tart  information 

Normal run termination card. 

Details of the input data, formats and options a r e  now given. 

CARD 1 Format (80A1) 

Variable D e s,c rip tion 

TITLE Problem description card. Any FORTRAN characters 
can be used to identify the problem being run. 

CARD 2 Format (1415) 

Variable Description 

NN 

NPRNT 

ISTART 

ICOORD 

Number of nodes to be used i’n finite-difference grid 
(50 maximum, nominally 20). 
Print control flag. 
NPRNT time steps. 

Restart flag, 
the standard initial conditions. If ISTART = 2, profiles 
of temperature, density and velocity at a given time a r e  
read-in and used as  initial conditions. This option 
allows res’tarting a problem i f  more time steps a r e  
needed or i f  program tepminates due to tfmax-time.tl 

Coordinate control flag. If ICOORD = 1, the inifinite 
flat plate model equations a r e  used. If ICOORD = 2, 
the radial coordinate - concentric cylinder model 
equations a r e  used. 

Program will print out every 

If ISTART = 1, program will run from 
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CARD 2 (Contfd) Format (1415) 

Variable Description . 

IUNITS 

ITYPE 

CARD 3 

Variable 

XL 

TZ 

RHO2 

P Z  

D TIME 

TIMEMX 

R Z  

SCALE 

Units control flag. 
assumed to be input. If IUNITS = 2, Ehglish units a r e  
assumed. The appropriate input units a r e  shown with 
Cards 3, 4 and 7. 

Flag to control the program flow. ITYPE = 1 runs the 
program in standard mode; the momentum, mass and 
energy equations a r e  solved in full. ITYPE = 2 signals 
a conduction-only run. 
convective terms Es solved. This option. can be used to 
compare the effects of convection on the temperature 
profile. 

I ~ I U ~ I T S  = 1, metric units a r e  

The energy equation with no 

FormaE (8E 10 .O) 

Description 

Distance L between the two plates ( i f  ICOORD = 1) or 
radius L of outer cylinder ( i f  ICOORD = 2), 

Initial isothermal absolute temperature T of fluid at  
res t ,  (OK or OR). 
Density po of fluid at  temperature To and pressure P 
(gm/cm3 or lb/ft3), 

Initial pressure Po (dyne/cm2 or lb/ft2). Either Po 
or po can be input a d  the program will  calculate the 

other from the jdeal gas state equation. 
Dimensionless time step At. 

to - star t  the calculation, 
stability criterion and adjusts At to maintain stability. 
Dimensionless time at  which the calculation terminates. 

(cm or ft) 

0 

0' 

(At = At'- /d) used 
0 

The program monitors the 

ttmax = t '  max VWO/L'). 
Radius of inner cylinsier (heater) i f  'ICOORD = 2. R Z  
should be zero i f  ICOORD = 1. 

Scale factor, s, (dimensionless) used to scale problem 
''time'' to ease the small time step restriction (see 
Section 3.4). 
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CARD 4 

Variable 

CONDZ 

VISCZ 

CVZ 

GAMMAZ 
z 

CARD 5 

Variable 

IBOUND 

TW 

QIN 

ITOP 

Format (5E 10 -0) 

Description 

. Thermal conductivity, k, of fluid, (dyne/sec°K or  
B tu/ft - s ec -OR ) , 
Dynamic viscosity, p ,  of fluid, (gm/cm-sec or  lb/ft/sec) 

Specific heat at  constant volume, C 
gm-OK or  Btu/lb-OR). 

Ratio of specific heats, Y (dimensionless). 
Compressibility coefficient in equation of state (dimen- 
sionless), 
in computing pressure from P = pZRT 

of fluid (dyne-cm/ 
V' 

The present program can use any 0 < Z 5 1 

Form'at (15, 23310.0, 15) 

Description 

Control flag for boundary condition on x = 0 (or r = ro) 
surface. IBOUND E f l  a specified temperature T, is 
used. IBOUND = +2 a specified heat flux q, is used. 
Positive values o~IBOUND will cause a constant Tw or  
qw to be used. A negative IBOUND allows tables of Tw 
o r  qw versus time to be read-in and the boundary 
condition will be variable as a function of time (see 
Cards 6,7). 
Dimensionless wall temperature to be applied t o x  = 0 
(or r = ro) surface. If IBOUND = fl this TW will be 
used as a constant boundary condition; If IBOUND = -1  
T W  'is computed by linear interpolation from the input 
table (Card 7 ) .  

Dimensionless heat flux (q'L'/k'Tk) to be applied to 

x = O  (or r = r ) surface. If IBOUND = +2, this QIN 

will  be used as a constant bbundary condition; i f  
IBOUND = -2, QIN i s  computed by linear interpolation 
from the input table (Card 7). 
Boundary condition control flag for x = L surface. 
ITOP = 1, an isothermal surface (T ) at x = L will be 

used. If ITOP = 2 an adiabatic surface (q = 0) a t  x = L 
will be used. 

0 

0 
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CARD 6 (Optional) Format (15) 

Variable Description 

NPT 1 gw Number of pairs to be input in T 
versus time tables. Input only i f  IBOUND i s  negative, 

versus time or 
W 

CARD GROUP 7 (Optional) Format (8E10.0) 

Variable 

TABLE 

Description 

Tables of wall temperature or wall heat flux versus 
time. 

IBOUND = -2 these a r e  q versus time tables. The 

input i s  alternate values of time and T 

pairs to a card until NPTl pairs a r e  read, (tl,Twl, 

IBOUND = -1  these a r e  Tw versus time tables. 

(or qw); three 
W 

W 

t2' T w2' t31 T w3 I *  

The times a r e  in seconds and the temperatures a r e  in 
O F  or OC. The heat fluxes a re  in watts/cm2 or Btu/ 
ft2- s ec . 

CARD GROUP 8 (Optional) Format (E15.7) 

Variable De scr  iption 

TIME Restart time. If ISTART = 2, this card i s  read, i f  
ISTART = 1, do not input i t .  
time at  which the program i s  to be restarted. 

TIME is the dimensionless 

CARD GROUP 9 (Optional) Format (5E15.7) 

Variable Description 

Temperature profile (I = 1, NN) at the time the run is to 
be restarted (dimensionless). These and the other re -  
s tar t  profiles a r e  to be punched from the printout at  the 
point where the previous run stop2ed. 
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CARD GROUP 10 (Optional) Format (5E15.7) 

Variable De sc ription 

U(I) belocity profile for res tar t  (see Group 9) 

CARD GROUP 11 (Optional) Format (5E15.7) 

Variable D e scrip tion 

RHO(1) Density profile for res tar t  (see Group 9). 

CARD GROUP 12 Format (80Al) 

Variable De script ion 

TITLE Run termination card. 
be run back-to-back simply by staking them. After the 
las t  case, a psuedo-title card i s  punched with the 
characters 

As many cases as desired can 

ENDRUN (Cols. 1-6). 

This causes a normal program stop. 

A.3 §AMPLE CASE 

The infinite parallel plate problem discussed in Section 4 i s  shown here 
as an example of the input and output formats of the TC1 program. A sample 

input is shown below. 

INPUT CARD§ 

I NF I N 1 TF PI . A T F  PROSLFM HFL IOM T!i!=2 
20 icrnn 1 1 1 1 

15.3 27340 1 o Q 1 0 F - 4  000 0.05 
1044CLF+4 10875F-4 30lhOF+7 1.666 1.0 

t 2.0 0.0 1 
FWnRt .fN 

1000 0 0.0 
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A sample output i s  given in Fig. A-3. A printout of the input data is 
shown for checking the user input. A sample flow field is shown at one time 
point to illustrate the format. 
same as described in the input guide. 

The meaning of the major variables are the 
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Fig. A.3 - Sample Output of TC1 Program 
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APPENDIX B 

The numerical scheme presented in Section 3 of this repor t  has first- 

order accuracy truncation e r r o r  in the time variable. 

applications this order of accuracy is insufficient to produce meaningful results. 

However, for the thermal convection problems being analyzed here, these first- 

order methods should be sufficiently accurate. In order to provide a check on 
the accuracy of the first order method, a Dufort-Frankel (Ref. B-1) algorithm 

w a s  devised and coded. The classical Dufort-Frankel scheme was chosen for 
comparison for the following reasons: 

For Borne fluid mechanics 

0 Second-order accuracy truncation e r ro r  in both time 
and distance 

Simplicity of programming 

e The smallest computer/real time ratio of the five 
schemes tested by Torrance (Ref. B-I)  

The form of the conservation equations and their finite difference repre- 

These finite differences incorporate sentations a r e  shown in Fig. B-1 to B-3. 

the same node-centered spatial  mesh used in the original TCl program 

The TCl explicit technique is utilized as a s tar ter  for this multi-time 

step scheme. 
ditions. 

for the Dufort-Frankel scheme as in TC1 except that a CALL START block was 

inserted immediately following the CALL INPUT bldck. 

Solutions a r e  marched out in time from the known initial con- 

The same logic, schematically accounted for in Appendix A was used 

The Dufort-Frankel program was applied to  the sample problem of Larkin 

(Ref. B-2) and the results compared to  those of the Lockheed TC1 program, 
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Temperature profiles for  the sample problem are  compared in Fig. B-4. 
These profilcs a r c  practically identical except that the Dufort-Frankel 

temperature gradient a t  the cool wall is more realistic 

rather than positive). This was a relatively minor change, however, a s  seen 
in Fig. B-4 The velocity (u) and pressure (P) profiles were also very similar, 

via. , 

< O  
x = l  (E( 

TCl Dufort - Frankel - 
U max 0.018 

0 

Period of 
Velocity Waves sec 

0.017 v F  0 

sec 

1.33 

Thus, the TC1 and Dufort-Frankel solutions of the sample problem a r e  in very 

close agreement. This is significant, since the two solution techniques use 

entirely different numerical approximations, and both yield similar results. 
The agreement indicates that the Lockheed velocity profiles rather than the 

Larkin (Ref. B-2) and Thuraisamy (Ref. B-3) results, a r e  more realistic, since 
Larkin and Thuraisamy used essentially identical numerical techniques. 
Furthermore, the maximum velocity attained in TC1 and D - F  solutions seem 

more realistic from a physical viewpoint because Larkin and Thuraisamy's 

maximum velocities were 1/5 the speed of sound whereas those of Lockheed 
were only 1/50 of sonic. 

In conclusion, the second-order accurate Dufort-Frankel method has pro- 

duced essentially the same results as the first-order method defined in Section 3. 

The accuracy of the first order method is thus established numerically and has 

been used for all calculations presented in the main text of this report. 



Momentum Eqwtion 

au = --L-a u , L a p  
a t  Fr ax (2') p ax t#p * 8% 

Finite Difference Form 

u"+l = - 1 
1 (1 + A) 

L 

a 2 0  8 pAt where A = 
3 Re  pY(Ax)' 

Difference Equations 

i = Z , . . . , k -  1 

&pi = PYtl - P;-l i = 2 , . .  ., k-1 

Fig. €3-1 - Finite Difference Form of Momeritum Equation 
(Dufort - Frankel) 
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C ont inui ty Equation 

a a = -  a t  - ax ( P I  

Finite Difference Form I 

1 - s [ e 6  (m):+' t (1 - e )  tix(m)r pi"' =p; X 

where 8 = constant, 1/2 - - L  < 8 C 1, S = At/2Ax 

Resulting Tri-Diagonal &#tern 

Aipi-l  n t  1 t B p i  n t  1 t Ci pg: = Di i =  1,. . . k 

where 

n t l  n+ 1 A. = - S u i - l  ci = s Uitl 1 

Bi = 1.0 Di =p i  - s w e )  hX (puli n 

n t l  A l  = 0.0 

B~ = 1 + s e n 1  

% = - s e  Ukel 

% = 1 - s e  % 

Ck = 0.0 

n+ 1 n t  1 

n t  1 c1 = se u2 

Fig. B-2 - Finite Difference Form of Continuity Equation (Larkin) 
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Energy Equation 

- - -  (3T - u-" DT (Y - 1 )  T h t  k y  - a2T 
a t  a x  ax PCVRePr ax2 

Finite Difference Form 

[TY-' - ui 6 x (T): 1 
Tn 6 (u): - B h2 (T)n hx 1 x  x 1  

- 
p 1  - 1 

i ( 1 t B )  
- 

2 k y A t  
2 n  Cv R e  P r  (Ax) pi 

where B = 

Difference Equations 

dx(T): = 2 (T: - Tw) 

n n  
"(u)I; = u1 tu 2 

W 
n-l t 2 T  6x(T)1 = Tg -3/2 T 1  2 n  

i = 2 , . . . , k - l  

Bx(T): = 2 (To - TE) 

i = 2 , . . . , k - l  

Fig. B-3 - Finite Difference Form of Energy Equation (Dufort-Frankel) 
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